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Abstract. The mass transport into a fluid bounded by stationary rigid walls in the limit of large Péclet number, Pe,
is examined analytically. Two model systems are considered in detail: a stationary cavity and a model involving
two concentric rotating cylinders. A macroscopic gradient is imposed between the top and bottom surfaces. It is
demonstrated that mass transport into the fluid is enhanced owing to a recirculation zone which is connected to
the solid boundary through a boundary layer of thickness O(Pe−1/3) in which cross-stream molecular diffusion
is balanced by convection. The associated enhancement is large and scales as Pe1/3. Our asymptotic analysis is
found to be in good agreement with numerical solutions of the full transport equation.
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1. Introduction

Engineering applications of interfacial mass transport can be found in a large variety of
industrial processes and devices such as evaporators, heat exchangers, absorbers, scrubbers
and falling film reactors. In several of these applications, mass is transported through uni-
directional flow fields. However, diffusion can be significantly enhanced even when a small
convective flow is generated in a direction normal to the originally parallel flow. For example,
mass transport across a laminar falling film can increase by as much as a factor of 10 when
waves appear at the interface [1] owing to the presence of a recirculation zone within the soli-
tary waves that dominate the large-time evolution of the surface of the film [2]. Similarly, heat
transport in a prototype system of two-dimensional flow between counter-rotating eccentric
cylinders [3,4,5,6] has been shown to increase significantly (by orders of magnitude) when re-
circulation zones exist within the flow. We also note that flow fields with recirculation regions
have been used successfully for separation purposes. For example, Baier et al. [7] suggested
recently that the Taylor vortices in a Couette device can be used to enhance mass transport
in separation processes significantly. Hence, flow-assisted diffusion has a profound impact
on a large variety of mass/heat-transport applications and understanding the enhancement
mechanism is crucial for the development of improved transport and separation processes.

This paper addresses the problem of mass-transport enhancement in confined regions boun-
ded by rigid walls by considering the two specific cases of two-dimensional flow of a viscous
incompressible fluid in a square cavity and the flow between two concentric cylinders as
model systems. (We shall focus on mass transport subsequently. The analogy to heat transport
is obvious.) Figures 1a and 5a sketch these two systems. The fluid motion in the cavity is
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generated by a steady disturbance – for example a small cylinder or a stirring device at the
centre of the cavity – while the flow field between the two concentric cylinders is induced
by the steady rotation of the inner cylinder in its own plane. Both problems are of intrinsic
theoretical importance as they represent simple examples of steady flows involving closed
streamlines and they are part of the larger class of steady separated flows. Both the flow and
concentration fields are assumed to be steady; time-dependent modulations of the flow field
can lead to chaotic advection which is beyond the scope of the present paper. Of particular
interest is the case where advection dominates over diffusion. The relative importance of ad-
vection and diffusion in the transport process is measured by the Péclet number, Pe, and hence
we are interested in the distinguished limit of large Pe – it should be noted that mass-transport
devices necessarily operate at extremely high Péclet numbers.

The associated problem of mass-transport in a driven cavity was recently considered by the
authors [8]. The study was a systematic parametric investigation of mass-transport enhance-
ment in a driven square cavity with and without a chemical reaction and for a wide range of
Reynolds and Péclet numbers and dimensionless reaction-rate constants. It was demonstrated
that, in the absence of a chemical reaction, the primary mechanism for mass-transport en-
hancement is a large recirculation zone present almost everywhere in the cavity, except very
close to the walls where molecular diffusion balances convection in thin boundary layers.

The same mechanism is present in the prototypes shown in Figures 1a and 5a: for large Pe,
the enhancement over pure diffusion mass-transport without recirculation will be much more
pronounced. In this case, the circuit time of the circulation in the cavity and cylinder models
is much shorter than the diffusive time scale and in steady-state mixing along each streamline
effectively removes concentration gradients. As a result, the cross-stream advection due to
the recirculation is far more important than diffusion and the recirculation zone becomes a
well-mixed region at steady-state (this effectively reduces the distance for diffusive transport).

Although mass/heat transport by buoyancy-induced convective motions in enclosed rec-
tangular cavities has been investigated by several authors (see for instance Patterson and
Imberger [9]), previous analyses of steady high-Péclet-number transport in regions with closed
streamlines have been restricted mainly to mobile interfaces: for example Shraiman [10],
Polyanin [11], Young et al. [12] and Rosenbluth et al. [13] examined in detail the transport
process between recirculation cells. Since the transport in this system is effectively between
two well-mixed convective cells, the enhancement is determined by a diffusive boundary
layer of thickness Pe−1/2 at the boundary of the two cells (the boundary in this case is a
separatrix connecting stagnation points and the diffusive layer is similar to the boundary layer
near mobile interfaces with a thickness that varies as Pe−1/2; see the review by Stewart [14]).
Consequently, the effective transport enhancement (or effective diffusivity) across circulation
cells varies as Pe1/2. When the top and bottom boundaries of the convection rolls are replaced
with rigid walls, Shraiman [10], Young et al. [12] and Rosenbluth et al. [13] argued that
diffusion is not effective during the turn of the mobile boundary layer onto the rigid wall and
hence the concentration simply follows the streamlines around the corner: the variation of
the concentration field along the streamlines adjacent to solid boundaries can be neglected.
Consequently, the effective diffusivity is, to leading order, the diffusivity computed by assum-
ing that all interfaces are mobile. This greatly simplifies the analysis which could otherwise
involve matching boundary layers of different thickness.

For the stationary cavity problem considered here, we will be interested mainly in devel-
oping an analytical method of solution. The problem of computing mass-transport through
laminar boundary layers is, in general, a difficult one because of the complicated nature of
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Figure 1. (a) Sketch of the rectangular-cavity-model problem. The flow is in the counterclockwise direction and
is induced by a disturbance at the center; (b) concentration contours in the stationary cavity obtained from a
numerical solution of the full transport equation for Pe = 103.

the governing equations and possible variations in the thickness of the boundary layer. For
the stationary cavity problem, we shall demonstrate that an analytical solution is possible as
the diffusive boundary layers on all four stationary walls are of the same thickness, Pe−1/3

(see, for instance, Acrivos and Goddard [15] for the problem of laminar flow over a semi-
infinite flat plate). It will be shown that all four boundary layers connect to a region where
the concentration is spatially homogeneous. We shall examine the transport mechanism in
detail through the analytical solutions, valid for Pe � 1, for the concentration fields derived
for both the cavity and the cylinder models. The enhancement of the flux across the top
surface over pure diffusion without recirculation will be shown to vary as Pe1/3, as simple
scaling arguments demonstrate. For the diffusion problem in a Rayleigh–Bénard convection
cell, Shraiman [10] obtained analytically the concentration field using matched asymptotic
expansions. We shall utilise here some of his asymptotic concepts to resolve the diffusive
boundary layers which bound our recirculation zone in order to obtain the effective diffusivity
and hence the average flux across the top surface. Notice that, in our case, there is a flux of
concentration at the top surface of the cavity which qualitatively changes the mechanism for
spreading the concentration.

2. Stationary cavity

We consider the steady, planar, laminar motion of an incompressible, constant-viscosity, New-
tonian fluid in a square cavity of characteristic dimension �. The flow in the cavity can, for
example, be induced by the steady rotation of a small cylinder located at the centre of the
cavity, as illustrated in Figure 1a. We define ψ̂ = 0 on the cavity boundary, while the flow is
driven in an anti-clockwise motion. To facilitate the analysis we take, for simplicity, a given
flow field

ψ̂ = 256�−7U0x
2(�− x)2y2(�− y)2, (1)
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in terms of the orthogonal coordinate system (x, y) whose origin is placed at the left corner of
the bottom wall. This stream function makes an analytical approach to the problem possible,
though still providing a recirculation zone.

We now introduce a passive species into the cavity via the top surface such that the con-
centration there assumes the prescribed surface value c = C0 at y = �. We also impose a
macroscopic gradient, by which the absorbed species is removed completely from the system
through the bottom surface at y = 0 via a perfect surface catalyst (alternatively we could
achieve the same effect by assuming that a porous medium is present at y = 0), and hence
c = 0 at y = 0. The two vertical walls are assumed to be impermeable and so no-flux
boundary conditions are imposed there with cx = 0 at x = 0 and x = �.

The appropriate equation for the steady-state mass-transport of the absorbed species is

(u · ∇)c = D∇2c

with D the molecular diffusivity. We now introduce the non-dimensionalisation, c = C0C,
x = �X, y = �Y and ψ̂ = �U0ψ to obtain the dimensionless governing equation for the
concentration field

Pe(ψYCX − ψXCY ) = CXX + CYY , (2a)

where Pe = U0�/D is the Péclet number which expresses the relative importance of convec-
tion over diffusion. The associated boundary conditions are

CX = 0 at X = 0 and X = 1 (0 < Y < 1), (2b)

C = 1 at Y = 1 (0 < X < 1), (2c)

C = 0 at Y = 0 (0 < X < 1). (2d)

As was pointed out in the Introduction, in the high-Pe limit the steady cross-stream con-
vection associated with the recirculation zone dominates over diffusion. In this limit, the outer
region (the term ‘outer’ here refers to the recirculation zone away from the boundaries) of
Equation (2a) is described by the equation

−ψYCX + ψXCY = 0 (3)

and hence the streamlines are identical to the concentration contours, so that C = C(ψ) to
leading order. This simply means that the concentration along each streamline is constant due
to the strong advection mixing. However, this may or may not lead to a constant-concentration
outer region. To show that this is the case, consider an arbitrary closed streamline � with
corresponding stream function ψ0. After invoking the divergence theorem and the continuity
equation ∇ · u = 0, we obtain∮

�

η̂ · (∇C)ds = 0 (4)

with η̂ the (outward) unit normal along �. This simply means that at steady state there is no
accumulation and no convection across � and the total diffusive flux must vanish exactly. We
now have, ∇C = (dC/dψ)∇ψ from C = C(ψ) and hence∮

�

(∇C) · η̂ds = dC

dψ
(ψ0)

∮
�

η̂ · ∇ψds = 0 (5)
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and since η̂ = ∇ψ/|∇ψ| the line integral
∮
�

η̂ · ∇ψds is simply
∮
�

|∇ψ|ds which is non-zero.
Consequently,

dC

dψ
(ψ0) = 0 (6)

and since ψ0 can be any closed streamline, Equation (6) then implies that the concentration
is, to leading order, homogeneous in the outer region.

2.1. BOUNDARY-LAYER ANALYSIS, Pe � 1

The full problem consists of an elliptic equation, Equation (2), in a finite region with boundary
conditions on all four walls, whose numerical solution for Pe = 103 is shown in Figure 1b.
However, by introducing appropriate boundary-layer coordinates, we may convert the prob-
lem into two parabolic equations, each defined over an infinite region. We shall obtain the
full solution by appropriately matching the solutions of the two parabolic equations with the
constant-concentration outer solution and by imposing a global self-consistency condition.

In the regions close to the stationary walls, there exists a boundary layer whose thickness
can be easily determined when we consider the dominant terms there. Let us take, for example,
the top wall: as Y → 1 we have ψX = O((1 − Y )2), ψY = O(1 − Y ), CX = O(1), CXX =
O(1), CY = O((1−Y )−1), CYY = O((1−Y )−2) and hence Pe(ψYCX−ψXCY ) = O(Pe(1−
Y )). Therefore, we can consider the following possibilities: Pe(1 − Y )3 � (1 − Y )2, Pe(1 −
Y )3 � 1, Pe(1−Y )3 ∼ (1−Y )2, 1 � Pe(1−Y )3 and Pe(1−Y )3 ∼ 1. In the first three cases
we may approximate Equation (2a) with CYinYin = 0, where Yin is the inner coordinate, which
yields a linear concentration profile in the boundary layer that satisfies the boundary condition
(2c) but it cannot match the outer solution. The fourth possibility yields, ψYinCX−ψXCYin = 0
with general solution C = C(ψ) to leading order in the boundary layer region (see discussion
in Section 2). We let fAB(ψ) denote the AB boundary layer solution that satisfies the wall
boundary condition and matches the outer region (we note that this does not uniquely define
fAB). However, matching of the boundary layers AB and BC in the neighbourhood of corner
B indicates that fAB(ψ) = fBC(ψ). Similarly fBC(ψ) = fCD(ψ) and hence fAB(ψ) =
fCD(ψ). But, fAB(0) = 1 and fCD(0) = 0 as ψ = 0 on the solid boundary and the boundary
layer solutions must satisfy the top and bottom wall boundary conditions. This obviously
leads to a contradiction and hence we are left with the final possibility, the distinguished limit
(1 − Y ) = O(Pe−1/3). Physically, this means that molecular diffusion across the boundary
layer is balanced by advection there. Hence, the concentration across the top boundary-layer
region varies with Pe1/3(1 − Y ) (in terms of dimensional variables, the size of the boundary
layer is �b ∼ Pe−1/3� ). A similar argument shows that a concentration boundary layer of
thickness δ ∼ Pe−1/3 is present near all four stationary walls.

We now introduce the boundary-layer coordinates, τ, which is almost tangential to the
streamlines, and σ, a cross-streamline coordinate. For convenience, we set A(ζ) = 256ζ2(1 −
ζ)2, such that the σ and τ coordinates are in general defined from a modified Von Mises
transformation

σ =
(

3Pe

4

)1/3

ψ
1
2 and τ = 1

a2
o

∫ λ

0

√
A(ζ)dζ, (7)

where

a2
o =

∫ 1

0

√
A(ζ)dζ = 8/3, λ = 1

2
+ n

2

(
Y − 1

2

X − 1
2

)n
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and n = sign(A(Y ) − A(X)), such that both σ and τ are O(1) in the boundary layer. Notice
that n > 0 for the vertical boundaries and n < 0 for the horizontal boundaries. Also, both λ

and τ increase in the direction of flow, and are defined so that λ, τ ∈ [0, 1]. Although λ, and
hence τ, depend on both X and Y , especially in the neighbourhood of the corners, near the
boundaries the dependence on the coordinate perpendicular to the boundary is much weaker.
We also note that near AB, λ � 1 − X, near BC, λ � 1 − Y , near CD, λ � X and near DA,
λ � Y , with the corners A, B, C and D as indicated in Figure 1a. For our problem, we take

σ =
(

3Pe

4

)1/3

16XY(1 − Y )(1 −X) and τ = 3λ2 − 2λ3. (8)

For example, near the top horizontal wall AB, we have 1−Y � 1, – in fact 1−Y = O(Pe−1/3)

– and hence, ψ � A(X)(1 − Y )2 with ψ = O(Pe−2/3). Therefore, for the top boundary,

σ �
(

3Pe

4

)1/3

16X(1 − X)(1 − Y ) and τ � 1 + 2X3 − 3X2.

Substituting these transformations in Equation (2a), the mass-transport equation for CAB ,
the concentration near AB, is

Pe(ψYτX − ψXτY )C
AB
τ =

(
3Pe

4

)2/3

|∇ψ
1
2 |2CAB

σσ +
(

3Pe

4

)1/3

(∇2ψ
1
2 )CAB

σ

+ 2

(
3Pe

4

)1/3

(∇ψ
1
2 · ∇τ)CAB

στ + (∇2τ)CAB
τ + |∇τ|2CAB

ττ .

The first and second terms on the left-hand side of the above equation are of O(Pe2/3) and
O(Pe1/3), respectively, while the first term on the right-hand side is of O(Pe2/3) with the
remaining terms being of O(Pe1/3). Thus, retaining only the leading order terms yields

4τXC
AB
τ =

(
3

4

)2/3

Pe−1/3ψYψ−1CAB
σσ +O(Pe−2/3) (9)

which can be rewritten as

CAB
τ = σ−1CAB

σσ . (10)

Similarly we find that for the left vertical wall BC with boundary-layer coordinates

σ �
(

3Pe

4

)1/3

16XY(1 − Y ) and τ � 1 + 2Y 3 − 3Y 2,

the boundary-layer concentration equation is given by Equation (10), with CAB replaced by
CBC .

We now demonstrate that the concentration in the outer region is exactly 1/2: withC(X, Y )
denoting the solution of (2), C(1−X, 1−Y ) would be the solution for the concentration field
in a cavity rotated 180◦ with C = 0 and C = 1 at the top and bottom walls, respectively,
maintaining the flow in an anti-clockwise motion. Consider now a cavity with C = 1 at both
the top and bottom surfaces. The solution in this case is trivial, i.e. C = 1 everywhere. This
problem is simply a superposition of the two previous problems with solutions C(X, Y ) and
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C(1−X, 1−Y ) (due to the linearity of the transport equation; notice also that the coefficients
of the equation depend on ψ which is always the same) and hence C(X, Y )+ C(1 − X, 1 −
Y ) = 1. In terms of the (σ, τ) coordinates we have C(σ, τ)+ C(σ, 1 + τ) = 1 and since both
C(σ, τ) and C(σ, 1 + τ) approach the constant concentration in the outer region as σ → ∞ –
this signifies matching with the regular solution in the spatially homogeneous outer region –
the concentration in the outer region must be 1/2. Therefore, only the solution near any two
adjacent walls is required, as the sum of concentrations near A or C equals 1, for any value of
σ. Hence, on the horizontal wall AB, the following boundary conditions must be satisfied by
the inner region:

C = s(σ) at τ = 0, C → 1
2 as σ → ∞ and C = 1 at σ = 0, (11)

where the function s(σ), the concentration C on τ = 0, is an, as yet, unknown function which
we shall determine using a global self-consistency condition.

Similarly, on the vertical wall BC, the boundary conditions to be satisfied by the inner
region are,

C = t (σ) at τ = 0, C → 1
2 as σ → ∞ and Cσ = 0 at σ = 0, (12)

where the function t (σ), the concentration C on τ = 0, will be obtained from the solution on
the wall AB.

2.2. SOLUTION FOR THE INNER REGION

We introduce C and Ĉ, both satisfying Equation (10) but with the following boundary condi-
tions

C = 1
2 and Ĉ = s(σ)− 1

2 on τ = 0,

C → 1
2 and Ĉ → 0 as σ → ∞,

C = 1 and Ĉ = 0 on σ = 0,

so thatC+Ĉ satisfies the boundary conditions in (11), with Ĉ satisfying homogeneous bound-
ary conditions. The equation for C can now be reduced to an ordinary differential equation
with respect to the single variable η = σ/τ1/3 and hence C is self-similar. A first integral of
the resulting equation can be readily obtained, Cη ∼ e−η3/9, which after using the boundary
conditions gives:

C = 1 − 3
1
3

2�( 1
3 )

∫ σ/τ
1
3

0
e−z3/9 dz. (13)

To find Ĉ we first take the Airy transform of Equation (10) (see Appendix 1), defined from
U(z, τ) =

√
3

2

∫∞
0 Ĉ(σ, τ)σG(−σz)dσ where G(z) = −√

3Ai(z)+Bi(z), and Ai(z) and Bi(z)
are Airy functions [16, pp. 446–450], to obtain:

Uτ(z, τ) =
√

3

2

∫ ∞

0
Ĉσσ(σ, τ)G(−σz)dσ =

√
3

2

∫ ∞

0
Ĉ(σ, τ)Gσσ(−σz)dσ.
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Using the result that Gσσ(−σz) = −z3σG(−σz), we then have Uτ(z, τ) = −z3U(z, τ), with
solution U(z, τ) = U(z, 0)e−z3τ, where U(z, 0) =

√
3

2

∫∞
0

(
s(p)− 1

2

)
pG(−pz)dp. Taking

the inverse transform, we obtain

Ĉ = 3

4

∫ ∞

0
ze−z3τG(−zσ)

∫ ∞

0

(
s(p)− 1

2

)
pG(−zp)dp dz, (14)

and the concentration in the boundary layer near the top horizontal wall AB is given by

C = 1− 3
1
3

2�( 1
3)

∫ σ/τ
1
3

0
e−z3/9dz+ 3

4

∫ ∞

0
ze−z3τG(−zσ)

∫ ∞

0

(
s(p)− 1

2

)
pG(−zp)dp dz.(15)

The concentration profile near the corner B is obtained by letting τ → 1 in expression (15).
This gives

t (σ) = 1 −H(σ)+ 3

4

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0

(
s(p)− 1

2

)
pG(−zp)dp dz (16)

where H(σ) = 3
1
3

2�( 1
3 )

∫ σ

0 e−z3/9dz = 1
2 (1 − �( 1

3 ,
σ3

9 )/�(
1
3)) with �(a, x) the incomplete

Gamma Function [16, pp. 260–263].
We now solve for the boundary layer near the wall BC. Again we introduce C and Ĉ both

satisfying Equation (10) but with the following boundary conditions

C = 1
2 and Ĉ = t (σ)− 1

2 on τ = 0,

C → 1
2 and Ĉ → 0 as σ → ∞,

Cσ = 0 and Ĉσ = 0 on σ = 0,

so that C + Ĉ satisfies the boundary conditions in (12), with Ĉ satisfying homogeneous
boundary conditions. The solution for C is simply 1

2 . Notice that the boundary condition
C → t (σ) as τ → 0 is the matching condition for the boundary layers AB and BC in the
vicinity of corner B. Indeed, the C = 1 boundary condition on the wall AB and C → 1

2
away from the wall imply that molecular diffusion along the X direction can be neglected and
hence the concentration contours in the AB boundary layer are, to leading order, straight lines
parallel to the wall. In fact, as the boundary condition on the vertical wall just after corner B is
CX = 0, the concentration contours in the AB boundary layer do not change as the BC wall is
approached and hence the solution for the top boundary layer is valid all the way to the corner,
thus allowing matching with the vertical boundary layer. This observation is consistent with
the numerical solution of the full transport Equation (2a) depicted in Figure 1b with Pe = 103

and is similar to the idea of relating the inner solution just before the edges of a finite-length
boundary layer to that immediately past these edges, introduced by Kuiken in his study of heat
and mass-transport from an open cavity [17].

Following now an analysis similar to that for the wall AB, we can determine Ĉ using the
Airy transform. The result is

Ĉ = 3

4

∫ ∞

0
ze−z3τG(−zσ)

∫ ∞

0

(
t (p)− 1

2

)
pG(−zp)dp dz, (17)
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where G(z) = √
3Ai(z)+ Bi(z). Finally, the concentration in the boundary layer near the left

vertical wall BC is given by

C = 1

2
+ 3

4

∫ ∞

0
ze−z3τG(−zσ)

∫ ∞

0

(
t (p)− 1

2

)
pG(−zp)dp dz. (18)

Again, if simple symmetry arguments are used, the inner solution near corner C is 1−s(σ),
where

1 − s(σ) = 1

2
+ 3

4

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0

(
t (p)− 1

2

)
pG(−zp)dp dz. (19)

Therefore, using Equation (16) for t (p), we get

s(σ) = 1

2
− 3

4

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0
pG(−zp) (1

2 −H(p)
)

dp dz

− 9

16

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0
pG(−zp)

∫ ∞

0
qe−q3

G(−qp)∫ ∞

0

(
s(r)− 1

2

)
rG(−rq)drdqdp dz (20)

which is a global self-consistency condition. This integral equation for s(σ) was solved nu-
merically by approximating the kernel with a large finite matrix and inverting the resulting
linear system. The domain size and step size were chosen so that larger regions with smaller
step sizes produced graphically indistinguishable results. A domain size of 20 with uniform
step sizes of 0·02 was found to provide sufficiently accurate results.

The function t (σ) was then computed from Equation (16), see Figure 2. We notice that
t (σ) → 1 as σ → 0 and t (σ) → 1/2 as σ → ∞. We see the classical undershoot around
σ = 2·6, which is followed by very rapidly decaying oscillations tending to a value of 1/2
into the outer region (not visible in the graph).

Figure (3a) depicts the inner region concentration contours in (σ, τ) co-ordinates obtained
from the boundary-layer analysis. Notice the excellent agreement with the numerical solution
of the full transport Equation (2a) shown in Figure (3b) for Pe = 103. The numerical solution
was determined by use of a standard finite-difference method in the x − y co-ordinates (i.e.
solving Equations (2)), with the solution then mapped onto the σ − τ plane.

2.3. EFFECTIVE DIFFUSIVITY

The effective diffusivity can be estimated by observing that the average flux through the top
wall is equal to the diffusive flux f through the boundary layer. This scales as f ∼ D/�b ∼
D/(Pe−1/3�), since cy scales as $c/�b with $c of O(1). We now set this flux equal to f =
−Deffc̄y with c̄ the concentration field averaged locally over the top surface of the cavity. The
mean concentration gradient is simply c̄y ∼ $c/� so that Deff ∼ DPe1/3 which is a measure
of the enhancement of the diffusivity for Pe � 1. Alternatively, the flux without a boundary
layer is simply f0 ∼ D/� and the flux with a boundary layer is f ∼ D/�b ∼ D/(Pe−1/3�).
The diffusive flux is hence enhanced: f/f0 ∼ Pe1/3 and f/f0 ∼ Deff/D by definition, so that
Deff/D ∼ Pe1/3.

Our analysis of the previous section allows us to determine the coefficient in front of the
Pe1/3 scaling. With f denoting the dimensional flux at the top surface,

f = −D

�

∫ �

0
cy |y=�dx.
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Figure 2. The concentration t (σ), given by expression (16), near corner B.

Figure 3. (a) Inner region concentration contours obtained from the boundary-layer solution; (b) Inner region
concentration contours obtained numerically from the full transport equation (2a) for Pe = 103 and mapped onto
the σ − τ plane.
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The effective diffusivity can be defined as

Deff = − f

cy

where cy is the mean macroscopic gradient in the y direction, C0/�, which yields

Deff = −f �

C0
= D

C0

∫ �

0
cy|y=�dx = D

∫ 1

0
CY |Y=1dX.

We then have
∫ 1

0 CY |
Y=1dX = − 8

3 (3Pe/4)1/3
∫ 1

0 Cσ|σ=0 dτ, and from Equation (15), we obtain∫ 1

0
Cσ|σ=0dτ = − 34/3

4�( 1
3 )

− 37/6

2�( 1
3 )

∫ ∞

0

1

z
(1 − e−z3

)

∫ ∞

0

(
s(p)− 1

2

)
pG(−zp)dpdz

= −0·4793.

Hence,

Deff = 1·1613DPe1/3 (21)

We notice that our solution applies to the problem of heat transport in a square cavity as
well with Deff/D equivalent to the (mean) Nusselt number in the heat transport case. In
Figure 4 we give a plot Deff/D from expression (21) (full line) as well as values obtained
from numerical solution of (2a) for a range of Pe (shown by ×). The Figure shows excellent
agreement between the results from our asymptotic analysis and the numerically determinated
values. There is still agreement, even when Pe is O(1), where our analysis is no longer valid.
This suggests that expression (21) gives a reliable guide to the effective diffusivity Deff for all
values of Pe of practical interest.

We finally comment on the more general problem of a rectangular cavity of length �x and
depth �y . In this case, we can map the rectangle into a square using x = �xX, y = �yY and
ψ̂ = 256�−4

x �−3
y U0x

2(�x−x)2y2(�y −y)2 such that ψ̂ = U0�yψ with ψ identical to the square
cavity case. The transport equation now becomes, Pe(ψYCX −ψXCY ) = CXX + (�x/�y)

2CYY

where Pe = U0�y/D. The inner coordinates σ and τ are the same as before (Equation (7))
with the inner equation for the vertical walls being identical to the square cavity case but
for the horizontal walls the inner equation now reads Cτ = (�x/�y)

2Cσσ/σ. The solution to
this equation can be easily obtained by rescaling σ. We can then follow the same procedure
used to derive the global self-consistency condition, Equation (20). The new condition has the
same functional form with the square cavity case except that G(−zσ) is now replaced with
G(−(�y/�x)2/3zσ), H(p) with H((�x/�y)2/3p) and G(−qp) with G(−(�x/�y)2/3qp). Hence,
for a rectangular cavity Equation (20) is parameterized by the aspect ratio �y/�x and will have
to be solved numerically for different values of this ratio resulting in a coefficient different to
1·1613 in front of the scaling DPe1/3 in (21) valid for a square cavity.

3. The concentric cylinders model

We now consider the steady, planar, laminar motion of an incompressible, constant-viscosity,
Newtonian fluid between two concentric cylinders of radii a and b with a > b. The flow is
induced by the steady rotation of the inner cylinder in its own plane such that uθ = U0 on
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Figure 4. Comparison of the analytical prediction (continuous line) given by Equation (21) with the numerical
solution (×) of the effective diffusivity Deff/D as a function of Pe.

Figure 5. (a) Sketch of the two concentric-cylinders-model problem. The flow is generated by the counterclock-
wise rotation of the inner cylinder; (b) Concentration contours in the region between the two concentric cylinders
obtained from a numerical solution of the full transport equation for Peφ = 103 with κ = 1

2 .
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r = b, where uθ and ur are the θ and r-velocity components with respect to the cylindrical
coordinate system (r, θ), whose origin is placed at the centre of the cylinders, as illustrated in
Figure 5a. The fluid flow is a simple (anti-clockwise) rotation given by

uθ = U0b

a2 − b2

(
a2

r
− r

)
, ur = 0 (22)

which satisfies both the continuity and Navier-Stokes equations.
We now introduce a passive species into the fluid with a concentration c = C0 at r = a for

0 < θ ≤ π. We also impose a macroscopic gradient by which the absorbed species is removed
completely from the system such that c = 0 at r = a for π < θ ≤ 2π. The inner cylinder is
taken to be impermeable and so a no-flux boundary condition is imposed: cr = 0 at r = b.

The steady-state mass transport satisfies (u ·∇)c = D∇2c which in cylindrical coordinates
becomes, in dimensionless form,

Peφ(1 − R2)Cτ = R2CRR + RCR + π−2Cττ (23a)

where c = C0C, r = aR and θ = πτ, with Pe = U0(a − b)/D now being the Péclet number
and φ = κ/(1 − κ)2(1 + κ)π a dimensionless parameter expressing the relative importance of
the ratio κ = b/a. The boundary conditions are

CR = 0 at R = κ, (23b)

C = 1 at R = 1 for 0 < τ ≤ 1, (23c)

C = 0 at R = 1 for 1 < τ ≤ 2. (23d)

Figure 5b depicts a typical concentration field obtained from a numerical solution of (23).

3.1. BOUNDARY-LAYER ANALYSIS, Pe � 1

An analysis similar to that given for the cavity case (see Section 2) shows the existence of a
concentration boundary layer of thickness δ ∼ Pe−1/3 present near the stationary outer cylin-
der and a homogeneous concentration outer region, to leading order (the size of this region
will increase as Pe increases). We assume that the dimensionless boundary-layer thickness is
much smaller than the dimensionless distance between the cylinders, i.e. (2φPe)−1/3 � 1−κ,
or Pe � (1 + κ)π/2(1 − κ).

Using the same arguments with the cavity problem, we can easily demonstrate that
C(R, τ) = 1 − C(R, 1 + τ) and hence only the solution for 0 < θ ≤ π is required.
Furthermore, the value of the concentration in the spatially homogeneous outer region is 1/2.
We now substitute the boundary-layer coordinate σ = (2φPe)1/3(1 −R) in the mass-transport
Equation (23a) which results in(

σ(2φPe)
2
3 − 2− 2

3 σ2(2φPe)
1
3

)
Cτ =

(
(2φPe)

1
3 − σ

)2
Cσσ −

(
(2φPe)

1
3 − σ

)
Cσ

+ π−2Cττ.

Retaining only the leading-order terms, we have

σCτ = Cσσ +O(Pe−1/3) (24)
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the solution of which must satisfy the boundary conditions

C = h(σ) at τ = 0, C → 1
2 as σ → ∞ and C = 1 at σ = 0 (25)

for 0 < τ ≤ 1. The unknown function h(σ), the concentration C on τ = 0, will be determined
from a global self-consistency condition.

3.2. SOLUTION FOR THE INNER REGION

The analysis is identical to that for the wall AB of the stationary cavity problem and therefore
the concentration in the upper boundary layer is given by

C = 1 − 3
1
3

2�( 1
3 )

∫ σ/τ
1
3

0
e−z3/9dz + 3

4

∫ ∞

0
ze−z3τG(−zσ)

∫ ∞

0

(
h(p)− 1

2

)
pG(−zp)dp dz. (26)

Simple symmetry considerations now indicate that C(σ, 0) = 1 − C(σ, 1), and hence

h(σ) = H(σ)− 3

4

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0

(
h(p)− 1

2

)
pG(−zp)dp dz, (27)

where H(σ) is the function introduced in Equation (16). Equation (27) is our global self-
consistency condition. Unlike the stationary cavity problem, where the global condition (20)
had to be solved numerically, an analytical solution of integral Equation (27) is possible.

For this purpose, let f (σ) = h(σ)− 1
2 and g(σ) = H(σ)− 1

2 . The Airy transforms of these

functions are P(y) =
√

3
2

∫∞
0 f (x)xG(−xy)dx and Q(y) =

√
3

2

∫∞
0 g(x)xG(−xy)dx and

hence f (x) =
√

3
2

∫∞
0 P(y)yG(−xy)dy and g(x) =

√
3

2

∫∞
0 Q(y)yG(−xy)dy. Equation (27)

can now be written as

f (σ) = g(σ)− 3

4

∫ ∞

0
ze−z3

G(−zσ)
∫ ∞

0
f (p)pG(−zp)dp dz,

which, after using the definition of the transform of f , yields
√

3

2

∫ ∞

0
z(1 + e−z3

)G(−zσ)P (z)dz = g(σ).

Taking the transform of this equation, we have

(1 + e−z3
)P (z) = Q(z). (28)

Rearranging for P and taking the transform of the new equation allows us to obtain

f (σ) =
√

3

2

∫ ∞

0
(1 + e−z3

)−1Q(z)zG(−zσ)dz

and thus f can be expressed as a double integral that involves g, namely

f (σ) = 3

4

∫ ∞

0
(1 + e−z3

)−1zG(−zσ)
∫ ∞

0
pG(−pz)g(p)dp dz.

Therefore,

h(σ) = 1

2
+ 3

4

∫ ∞

0
(1 + e−z3

)−1zG(−zσ)
∫ ∞

0
pG(−pz) (H(p)− 1

2

)
dp dz (29)
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Figure 6. The concentration h(σ), given by expression (29), near τ = 0.

and C can now be obtained from (26).
The function h(σ) was evaluated by numerical integration – see Figure 6 – with the same

criteria as before on domain size and step size to insure that sufficiently accurate results were
obtained – a domain size of 20 with uniform step sizes of 0·004 was used. We notice that
h(σ) → 0 as σ → 0 and h(σ) → 1/2 as σ → ∞. Again we see the classical overshoot around
σ = 2·6, which is followed by very rapidly decaying oscillations tending to a value of 1/2
into the outer region (not visible in the graph).

Figure (7a) depicts the inner region concentration contours in (σ, τ) co-ordinates obtained
from the boundary-layer analysis. Notice the excellent agreement with the numerical solution
of the full transport Equation (23a) shown in Figure (7b) for Peφ = 103 and κ = 1

2 . The
numerical solution was determined by means of a standard finite-difference method in polar
co-ordinates r − θ, with the solution then mapped onto the σ − τ plane.

3.3. EFFECTIVE DIFFUSIVITY

Following Section 2.3, the effective diffusivity for the cylinders model is defined as

Deff = −f a

C0
= Da

C0π

∫ π

0
cr |r=adθ = D

∫ 1

0
CR|

R=1dτ,

where f is the dimensional flux through the top surface. We now have,
∫ 1

0 CR|
R=1dτ

= − (2φPe)1/3
∫ 1

0 Cσ|σ=0dτ, which can be obtained from (26) as∫ 1

0
Cσ|σ=0dτ = − 34/3

4�( 1
3 )

− 37/6

2�( 1
3 )

∫ ∞

0

1

z
(1 − e−z3

)

∫ ∞

0

(
h(p)− 1

2

)
pG(−zp)dp dz.
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Figure 7. (a) Inner region concentration contours obtained from the boundary-layer solution; (b) Inner region
concentration contours obtained numerically from the full transport equation (23a) for Peφ = 103, κ = 1

2 and
mapped onto the σ − τ plane.

From Equation (28) we have∫ 1

0
Cσ|σ=0dτ = − 34/3

4�( 1
3 )

− 37/6

2�( 1
3 )

∫ ∞

0

(1 − e−z3
)

z(1 + e−z3
)

∫ ∞

0

(
H(p)− 1

2

)
pG(−zp)dp dz

= −0·5450

The effective diffusivity is then given by

Deff = 0·6741Dφ1/3Pe1/3. (30)

This equation applies to both mass and heat transport with Deff/D equivalent to the (mean)
Nusselt number in the case of heat transport. A plot of Deff/D obtained from (30) (full line)
for κ = 1/2 is shown in Figure 8. Also shown are values obtained from a numerical solution
of (23) over a range of Pe (shown by ×) for κ = 1/2. There is good agreement between the
two sets of results even when Pe is O(1), though the agreement is not quite as good as for
the cavity problem (see Figure 4). We finally notice that, unlike (21) for the cavity problem,
Equation (30) is valid for any ratio κ = b/a provided, of course, Pe � (1 + κ)π/2(1 − κ)

(see Section 3.1).

4. Conclusion

Mass-transport enhancement in regions bounded by mobile interfaces has been a subject of
intense investigation over the years. In this paper, we have examined analytically the mecha-
nism of mass-transport enhancement into a fluid bounded by rigid walls. Two problems were
considered: a stationary cavity, where the flow field is induced by a disturbance located at
the centre of the cavity, and a concentric-cylinders model, where the flow is induced by
the rotation of the inner cylinder in its own plane. We analyzed the transport process in the
large-Péclet-number limit using matched asymptotic expansions.
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Figure 8. Comparison of the analytical prediction (continuous line) given by Equation (30) with the numerical
solution (×) of the effective diffusivity Deff/D as a function of Pe and φ, with κ = 1

2 .

We have demonstrated that, when a macroscopic gradient is imposed, the primary mecha-
nism for mass-transport is a large recirculation zone within the fluid, except close to the walls,
where molecular diffusion balances convection in thin boundary layers. The enhancement
over pure diffusion is found to scale as Pe1/3. The method of calculation of the effective
diffusivity can be easily generalized to describe flow-assisted diffusion in more general fluid
flow structures.

Finally, there are a number of interesting questions related to the analysis presented here.
For example, it would be interesting to compute the effective diffusivity in the presence of
(slow) oscillatory convection. Another related problem would be the presence of active impu-
rities in the flow, i.e. the case where the effect of varying concentration on the flow through
buoyancy cannot be neglected (as is the case with binary convection).
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Appendix 1. The Airy transform

The solutions of the equation F ′′ − xF = 0 are Airy functions [16, pp. 446–450], namely
Ai(x) = c1f (x)− c2g(x) and Bi(x) = √

3(c1f (x)+ c2g(x)), where
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c1 = 3− 2
3

�
(

2
3

) , c2 = 3− 1
3

�
(

1
3

) , and f (x) =
∞∑
k=0

3k
(

1

3

)
k

x3k

(3k)! , g(x) =
∞∑
k=0

3k
(

2

3

)
k

x3k+1

(3k + 1)! .

Here (m)k = ∏k−1
n=0(n+m) and (m)0 = 1. The asymptotic behaviour of the Airy functions

is Ai(−x) � π− 1
2 x− 1

4 sin( 2
3x

3
2 + π

4 ) and Bi(−x) � π− 1
2 x− 1

4 cos( 2
3x

3
2 + π

4 ) as x → ∞.
Consider Y ′′ + λxY = 0 (∗) on [0, L] with Y (0) = 0 and Y (L) = 0; then from standard

Sturm-Liouville Theory there exists an infinite sequence {λn} of real positive distinct eigen-
values with corresponding orthogonal eigenfunctions {Yn}, satisfying

∫ L
0 xY 2

n dx = 1. Further,
any twice continuously differentiable function j (x) : [0, L] → R satisfying j (0) = j (L) = 0
can be expanded in a uniformly convergent series of eigenfunctions, j (x) = ∑∞

n=1 cnYn(x)

where cn = ∫ L
0 j (x)xYn(x)dx.

Two linearly independent solutions of (∗) are Ai(−λ
1/3
n x) and Bi(−λ

1/3
n x), hence, Yn(x) =

αnAi(−λ
1/3
n x) + βnBi(−λ

1/3
n x). Now Yn(0) = 0 gives αn + βn

√
3 = 0 and Yn(L) = 0 gives√

3Ai(−λ
1/3
n L) = Bi(−λ

1/3
n L), which after using the asymptotic approximations results in

tan
(

2
3λ

1/2
n L3/2 + π

4

)
� 1√

3
, thus, λn � (

3π(n− 1
12)L

−3/2/2
)2

with $λ1/2 � 3πL−3/2/2, for

large n, where $λ1/2 = λ
1/2
n+1 − λ

1/2
n .

Introducing G(z) = −√
3Ai(z)+ Bi(z), we have Yn(x) = βnG(−λ

1/3
n x) and from Appen-

dix 2, the normalisation coefficient βn � λ
1/12
n ($λ1/2)1/2/

√
2. Hence, using the eigenfunction

expansion, j (x) = ∑∞
n=1 Yn(x)

∫ L
0 j (p)pYn(p) dp, we have

j (x) = 1

2

∞∑
n=1

λ1/6
n G(−λ1/3

n x)($λ1/2)

∫ L

0
j (p)pG(−λ1/3

n p) dp

Similarly the function G(z) (first introduced in (17)) which satisfies Gz(0) = 0 instead of
G(0) = 0 has λn � (3(n− 5

12)π/2L3/2)2 with the same βn.
We now let L → ∞, as our inner region is defined in an infinite domain, and after

substituting z = λ
1/3
n , we arrive at

j (x) = 3

4

∫ ∞

0
zG(−zx)

∫ ∞

0
j (p)pG(−zp)dp dz

for any smooth function j (x) which decays faster than x−3/4 as x → ∞. This leads us to
define the Airy transform

A[j (x)] = J (y) =
√

3

2

∫ ∞

0
j (x)xG(−xy) dx

with inverse

A−1[J (y)] = j (x) =
√

3

2

∫ ∞

0
J (y)yG(−xy) dy.
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Appendix 2: The normalisation coefficient

Defining u(x) = G(−λ1/3x) and v(x) = G(−λ
1/3
n x) such that uxx + λxu = 0 and vxx +

λnxv = 0, where u(0) = v(0) = 0 and v(L) = 0. Then v(uxx + λnxu) − u(vxx + λxv) = 0
which after integrating over the domain [0, L] gives

(λ − λn)

∫ L

0
xuvdx = u(L)vx(L)

and hence∫ L

0
xG(−λ1/3x)G(−λ1/3

n x)dx = G(−λ1/3L)Gx(−λ
1/3
n x)|x=L

λ − λn
.

Now,∫ L

0
x(G(−λ1/3

n x))2dx = lim
λ→λn

∫ L

0
xG(−λ1/3x)G(−λ1/3

n x)dx

= lim
λ→λn

G(−λ1/3L)GL(−λ
1/3
n L)

λ − λn

= 1

3
Lλ−1/3

n Gz(−z)2|z=λ
1/3
n L

using L’Hôpital’s rule. The asymptotic approximations for the Airy functions, results inGz(−z)
� (−1)n2π−1/2λ

1/12
n L1/4. Hence,∫ L

0
x(G(−λ1/3

n x))2dx � 4
3λ−1/6

n L3/2π−1 = 2λ−1/6
n ($λ1/2)−1.

Since 1 = ∫ L
0 xY 2

n dx = β2
n

∫ L
0 x(G(−λ

1/3
n x))2dx, hence βn � λ

1/12
n ($λ1/2)1/2/

√
2.
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